

Tel: +61 3 9701 6007 Fax: +61 3 9701 5712

Email: services@swep.com.au

ABN: 26 005 031 569

www.swep.com.au

Complete Fertiliser Analysis

Sustainable Soil Management with the Mikhail Balance System

DATE ISSUED: 4/05/2023 **DATE RECEIVED:** 26/04/2023

3

3

FILE NO: 2304176849

RIVER STONE FISH FARM CLIENT ID: RSF001

PO BOX 300 **PHONE**: 0414 687 468

REFERENCE :
RIVERSTONE , NSW 2765 REFERENCE PHONE :

SAMPLE ID: SF2023, BATCH #SF230401 ANALYSIS REQUIRED: Complete

Fertiliser Analysis

page 1. Total Analysis, Microbial Analysis 2

2. Notes on Biology Management

3. Analytical Methods

CONTENTS:

FILE NO: 2304176849 PAGE NO: 2

Total Analysis

			lotai	Anaiysis	I Otal Analysis								
	ITEM		UNIT	RESULT									
Basic I	Measures:												
	pH(direct)			2.52									
	Electrical Conductivity	EC	μS/cm	52000									
	TOTAL SOLUBLE SALT	TSS	ppm	33300									
Major I	Nutrients:												
	TOTAL NITROGEN	N	%	6.68									
	TOTAL PHOSPHORUS	Р	%	1.12									
	TOTAL POTASSIUM	K	%	4.41									
	TOTAL SULPHUR	S	%	0.123									
Total C	Cations:												
	TOTAL CALCIUM	Ca	%	2.83									
	TOTAL MAGNESIUM	Mg	%	0.156									
	TOTAL SODIUM	Na	%	0.235									
Trace I	Minerals:												
	TOTAL COPPER	Cu	ppm	128									
	TOTAL ZINC	Zn	ppm	503									
	TOTAL IRON	Fe	ppm	533									
	TOTAL MANGANESE	Mn	ppm	394									
	TOTAL COBALT	Co	ppm	0.438									
	TOTAL MOLYBDENUM	Мо	ppm	12.3									
	TOTAL BORON	В	ppm	118									
Carbor	n Content:												
	TOTAL ORGANIC MATTER		%	16.8									
	TOTAL ORGANIC CARBON		%	8.39									
	CARBON/NITROGEN RATIO	C/N		1.26									
				al Analysis									
	ITEM		LINIT	RESULT	% of Total Active Bacteria								

Microbial Analysis							
ITEM	UNIT	RESULT	% of Total Active Bacteria				
ACTIVE LACTIC ACID BACTERIA			1,000	41.67 %			
Active Fungi	cfu/ml	100					
Cellulose Utilisers	cfu/ml	100					
TOTAL ACTIVE FUNGI	cfu/ml		200	8.33 %			
ACTIVE YEASTS	cfu/ml		100	4.17 %			
ACTIVE ACTINOMYCETES	cfu/ml		1,000	41.67 %			
ACTIVE PHOTOSYNTHETIC BACTERIA	cfu/ml		100	4.17 %			
Total Active Population:	cfu/ml		2,400				

See notes on Biology Management (page 3).

No bacterial colonies were detected on the culture media, if the result is 1000 cfu/g for Lactic Acid Bacteria and Actinomycetes or 100 cfu/g for Yeast, Fungi, Cellulose and Photosynthetic Bacteria.

ppm = parts per million = milligrams per kilogram cfu/ml = colony forming unit per millilitre of material 1 % = 10,000 ppm

Notes on Biology Management

The first thing to remember is that SWEP results are for ACTIVE micro-organisms only. This means only those that will immediately grow under ideal conditions (generally about 7-10% of total soil biomass). This allows us to analyse samples year round, since the microbes that are active in spring will still be present in summer or winter, but at very reduced levels of activity. Given the ideal conditions in our cultures, they will spring back to life and grow much more quickly than others.

Active Indicator Organisms

Photosynthetic bacteria like *Rhodopseudomonas spp* and *Bradyrhizobium spp* require only sunlight, carbon dioxide and mineral nutrients to survive. They are important in recycling organic matter, particularly compounds that are difficult to break down - such as pesticide and petrochemical residues. They are also important for synthesis of bio-active compounds that are known to stimulate plant growth.

Yeasts such as *Saccaromyces spp, Debaryomyces spp, Torulopis spp* and *Rhodotrula spp* synthesise plant growth substances from amino acids and sugars that are produced by photosynthetic bacteria. These substances also promote the growth of Lactic acid bacteria and Actinomycetes.

Lactic acid bacteria such as *Lactobaccillus spp, Leuconostoc spp, Lactococcus spp* and *Pediococcus spp* produce Lactic Acid from sugars and carbohydrates. Lactic acid is a strong bio-suppressive compound that helps control harmful micro-organisms. This effect, together with other trace nutrients produced by members of this group, is particularly beneficial to the growth of Photosynthetic bacteria and Yeasts.

Actinomycetes such as *Actinomyces spp* and *Streptomyces spp* produce antibiotic compounds that are effective suppressants of pathogenic organisms. They have also been shown to produce plant hormones - especially when treated with kelp extracts.

Fungi such as *Aspergillus spp, Penecillium spp, Mucor spp* and *Rhizopus spp* have many beneficial effects on plant growth. These include the production of enzymes, antibiotics and various growth regulators. They are also important in the conversion of organic matter to humic substances. Some of the less complex compounds produced from this process are also important food sources for some bacteria.

Cellulose Utilisers like *Trichoderma spp* require only minerals and cellulose for growth. These fungi break down plant remains into organic materials that are beneficial to other micro-organisms such as Protozoa.

Analytical Methods								
TOTAL NITROGEN	Dumas method, LECO	TOTAL COBALT	Acid digestion, ICPAES					
TOTAL PHOSPHORUS	Acid digestion, ICPAES	TOTAL BORON	Acid digestion, ICPAES					
TOTAL POTASSIUM	Acid digestion, ICPAES	TOTAL MOLYBDENUM	Acid digestion, ICPAES					
TOTAL SULPHUR	Acid digestion, ICPAES	рН	Method 4A1, water supension*					
TOTAL CALCIUM	Acid digestion, ICPAES	Electrical Conductivity	Method 3A1, water extract*					
TOTAL MAGNESIUM	Acid digestion, ICPAES	TOTAL ORGANIC CARBON	Method 6B3, LECO*					
TOTAL SODIUM	Acid digestion, ICPAES	MOISTURE CONTENT	Gravimetric method					
TOTAL IRON	Acid digestion, ICPAES	CARBON / NITROGEN RATIO	Calculation					
TOTAL MANGANESE	Acid digestion, ICPAES							
TOTAL ZINC	Acid digestion, ICPAES	Microbial Analysis	SWEP Methods					

Acid digestion, ICPAES

TOTAL COPPER

^{*} Rayment, G.E. & Higginson, F.R. (1992). Australian Laboratory Handbook for Soil and Water Chemical Methods. Inkata Press, Port Melbourne, Australia.